首页> 外文OA文献 >Molecular Dynamics Studies of Polyethylene Oxide and Polyethylene Glycol: Hydrodynamic Radius and Shape Anisotropy
【2h】

Molecular Dynamics Studies of Polyethylene Oxide and Polyethylene Glycol: Hydrodynamic Radius and Shape Anisotropy

机译:聚环氧乙烷和聚乙二醇的分子动力学研究:流体动力学半径和形状各向异性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A revision (C35r) to the CHARMM ether force field is shown to reproduce experimentally observed conformational populations of dimethoxyethane. Molecular dynamics simulations of 9, 18, 27, and 36-mers of polyethylene oxide (PEO) and 27-mers of polyethylene glycol (PEG) in water based on C35r yield a persistence length λ = 3.7 Å, in quantitative agreement with experimentally obtained values of 3.7 Å for PEO and 3.8 Å for PEG; agreement with experimental values for hydrodynamic radii of comparably sized PEG is also excellent. The exponent υ relating the radius of gyration and molecular weight (\documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{pmc}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}R_{{\mathrm{g}}}{\propto}M_{{\mathrm{w}}}^{{\upsilon}}\end{equation*}\end{document}) of PEO from the simulations equals 0.515 ± 0.023, consistent with experimental observations that low molecular weight PEG behaves as an ideal chain. The shape anisotropy of hydrated PEO is 2.59:1.44:1.00. The dimension of the middle length for each of the polymers nearly equals the hydrodynamic radius \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{pmc}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}R_{{\mathrm{h}}}\end{equation*}\end{document}obtained from diffusion measurements in solution. This explains the correspondence of \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{pmc}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}R_{{\mathrm{h}}}\end{equation*}\end{document} and \documentclass[10pt]{article}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{pmc}\usepackage[Euler]{upgreek}\pagestyle{empty}\oddsidemargin -1.0in\begin{document}\begin{equation*}R_{{\mathrm{p}}},\end{equation*}\end{document} the pore radius of membrane channels: a polymer such as PEG diffuses with its long axis parallel to the membrane channel, and passes through the channel without substantial distortion.
机译:CHARMM醚力场的修订版(C35r)显示出实验观察到的二甲氧基乙烷构象种群。根据C35r对9、18、27和36聚环氧乙烷(PEO)和27聚乙二醇(PEG)进行分子动力学模拟,得出持久性长度λ= 3.7Å,与实验获得的定量一致PEO为3.7Å,PEG为3.8Å;尺寸相当的PEG的流体力学半径与实验值的一致性也很好。与回转半径和分子量有关的指数υ(\ documentclass [10pt] {article} \ usepackage {amsmath} \ usepackage {wasysym} \ usepackage {amsfonts} \ usepackage {amssymb} \ usepackage {amsbsy} \ usepackage {mathrsfs} \ usepackage {pmc} \ usepackage [Euler] {upgreek} \ pagestyle {empty} \ oddsidemargin -1.0in \ begin {document} \ begin {equation *} R _ {{\ mathrm {g}}} {\ propto} M_ {来自模拟的PEO的{\ mathrm {w}} ^^ {{\ upsilon}} \ end {equation *} \ end {document})等于0.515±0.023,这与低分子量PEG表现理想的实验观察结果一致链。水合PEO的形状各向异性为2.59:1.44:1.00。每种聚合物的中间长度尺寸几乎等于流体力学半径\ documentclass [10pt] {article} \ usepackage {amsmath} \ usepackage {wasysym} \ usepackage {amsfonts} \ usepackage {amssymb} \ usepackage {amsbsy} \ usepackage {mathrsfs} \ usepackage {pmc} \ usepackage [Euler] {upgreek} \ pagestyle {empty} \ oddsidemargin -1.0in \ begin {document} \ begin {equation *} R _ {{{\ mathrm {h}}} \\ end {equation *} \ end {document}是从溶液中的扩散测量中获得的。这说明了\ documentclass [10pt] {article} \ usepackage {amsmath} \ usepackage {wasysym} \ usepackage {amsfonts} \ usepackage {amssymb} \ usepackage {amsbsy} \ usepackage {mathrsfs} \ usepackage {pmc} \ usepackage的对应关系[Euler] {upgreek} \ pagestyle {empty} \ oddsidemargin -1.0in \ begin {document} \ begin {equation *} R _ {{\ mathrm {h}}} \ end {equation *} \ end {document}和\ documentclass [10pt] {article} \ usepackage {amsmath} \ usepackage {wasysym} \ usepackage {amsfonts} \ usepackage {amssymb} \ usepackage {amsbsy} \ usepackage {mathrsfs} \ usepackage {pmc} \ usepackage [Euler] {upgreek} \ pagestyle {empty} \ oddsidemargin -1.0in \ begin {document} \ begin {equation *} R _ {{\ mathrm {p}}},\ end {equation *} \ end {document}膜通道的孔半径:诸如PEG之类的聚合物以其长轴平行于膜通道的方式扩散,并通过通道而基本不变形。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号